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Summary

To test hypotheses about the origin of modern humans,
we analyzed mtDNA sequences, 30 nuclear restriction-
site polymorphisms (RSPs), and 30 tetranucleotide short
tandem repeat (STR) polymorphisms in 243 Africans,
Asians, and Europeans. An evolutionary tree based on
mtDNA displays deep African branches, indicating
greater genetic diversity for African populations. This
finding, which is consistent with previous mtDNA anal-
yses, has been interpreted as evidence for an African
origin of modern humans. Both sets of nuclear polymor-
phisms, as well as a third set of trinucleotide polymor-
phisms, are highly consistent with one another but fail
to show deep branches for African populations. These
results, which represent the first direct comparison of
mtDNA and nuclear genetic data in major continental
populations, undermine the genetic evidence for an Afri-
can origin of modern humans.

Introduction

Genetic data can reveal much about human evolution.
Earlier genetic studies of human populations were based
on blood group and protein polymorphisms (Nei and
Roychoudhury 1982; Cavalli-Sforza et al. 1988), but
these systems may not be selectively neutral and do not
directly reflect variation at the DNA level. MtDNA has
been used extensively in studies of human origins (Cann
et al. 1987; Vigilant et al. 1991; Rogers and Harpending
1992; Sherry et al. 1994; Horai et al. 1995), and most
of these analyses have shown excess genetic diversity in
African populations. This result has been interpreted as
support for an African origin for modern Homo sapiens,
although some disagree with this interpretation (Spuhler
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1993; Templeton 1993). Drawbacks of mtDNA are that
it provides a limited amount of information about ge-
netic variation (Nei and Livshits 1989) and that it may
not be selectively neutral (Excoffier 1990). More re-
cently, nuclear DNA polymorphisms, including restric-
tion-site polymorphisms (RSPs) (Bowcock et al. 1991;
Kidd et al. 1991) and highly variable minisatellite and
microsatellite polymorphisms (Deka et al. 1991, 1995;
Edwards et al. 1992; Mountain and Cavalli-Sforza
1994; Bowcock et al. 1994; Di Rienzo et al. 1994), have
been used to infer human evolutionary history.
While nuclear and mtDNA data reveal some evolu-

tionary patterns in common (Bowcock et al. 1994), the
degree of concordance'between these two types of data
has not been closely scrutinized. In particular, no study
has compared both types of genetic variation in the same
individuals across major continental populations. We
present the results of a direct comparison of mtDNA
and nuclear variation in a series of 243 Africans, Asians,
and Europeans. Our analyses show that nuclear and
mtDNA data present discordant pictures of human pop-
ulation affinities.

Material and Methods

The study population consists of 75 Africans (22 So-
tho-Tswana, 14 Tsonga, 14 Nguni, 15 San, 5 Biaka
Pygmies, and 5 Mbuti Pygmies), 78 Asians (12 Cambo-
dians, 17 Chinese, 19 Japanese, 6 Malay, and 9 Viet-
namese, 2 Koreans, and 13 individuals of mixed Asian
ancestry), and 90 Europeans (20 unrelated French mem-
bers of the CEPH kindreds and 70 unrelated Utah males
whose ancestries are traced almost exclusively to Great
Britain, Denmark, Norway, and Sweden [O'Brien et al.
1994]; the latter are consequently termed "northern Eu-
ropeans"). The Sotho-Tswana, Tsonga, and Nguni are
all Bantu speakers who are thought to have diverged
from one another during the past 1,000-2,000 years.
Informed consent was obtained from all subjects whose
blood was drawn at the University of Utah.

African, Asian, and European DNAs were prepared
from blood or transformed lymphoblast cell lines. DNA
extractions were performed by established methods (Bell
et al. 1981; Sykes 1983). Genotypes for 30 tetranucleo-
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tide short tandem repeats (STRs) and 30 RSPs were
analyzed using PCR. Genomic DNA sequences were am-
plified in 1x buffer (10 mM Tris, pH 8.3; 50 mM KCI;
and 1.5 mM MgCl2) using 20 ng of template genomic
DNA, 50 jM dNTPs, 20 pmol of each primer, and 1 U
Taq DNA polymerase in a total reaction volume of 25
pl. Samples were cycled 30 times in a Perkin-Elmer 9600
PCR machine. For all STR systems, one primer was end-
labeled using y32P-ATP and polynucleotide kinase. One
picomole of radiolabeled primer was added to the stan-
dard PCR reaction above. PCR products for the STR
systems were separated by denaturing polyacrylamide
gel electrophoresis and visualized by autoradiography.
PCR-amplified segments for each of the RSPs were di-
gested for 2 h by adding 10 U of the appropriate restric-
tion enzyme in 10 pl of 1 x restriction enzyme buffer to
each sample. Restriction fragments were separated by
agarose gel electrophoresis (3% NuSieve) and visualized
by ethidium bromide staining.
The polymorphisms of each major type (RSPs and

STRs) are unlinked, and nearly all are located on sepa-
rate chromosome arms. Genome Data Base (GDB) ID
numbers for RSP markers are GOO-178-350, GOO-181-
665, GOO-206-704, GOO-197-514, GOO-180-400, GOO-
178-648, GOO-251-590, GOO-185-229, GOO-171-808,
GOO-177-841, GOO-177-108, GOO-187-676, GOO-285-
016, GOO-181-821, GOO-180-411, GOO-250-584, GOO-
178-649, GOO-181-402, GOO-182-559, GOO-180-743,
GOO-196-856, GOO-177-381, GOO-210-937, GOO-180-
968, GOO-182-529, GOO-192-312, GOO-196-905, GOO-
181-184, GOO-182-305, GOO-185-174. STR loci used in
this analysis are DlS407, D1S399, D2S273, D3S1537,
D3S1545, D4S1525, D4S1530, DSS580, D6S400,
D6S393, D7S620, D7S623, D8S499, D8S384, D9S249,
D9S762, D10S526, D1OS516, D10S525, HRAS1 (GDB
ID GOO-187-026), VWFII (GDB ID GOO-177-640),
D14S119, D1SS195, D16S485, D17S919, D18S390,
D19S403, D19S400, D20S161, and D20S428.
The mtDNA region corresponding to hypervariable

sequence-2 (HVS-2) in Vigilant et al. (1989) was PCR-
amplified as described by Bamshad et al. (in press). After
extensive sequencing of HVS-2 in 20 individuals, a 200-
bp region corresponding to bases 71-270 of the Cam-
bridge Reference Sequence (Anderson et al. 1981) was
found to contain 90% of the polymorphisms in the re-
gion and was thus examined in all individuals. The
mtDNA sequence and the allele frequencies for the STRs
and RSPs are given in the appendix.
Data were analyzed at two levels of population sub-

division: major continental populations (African,
Asian, and European) and the 13 subpopulations
listed within these major populations. Allele frequen-
cies for each RSP and STR system were estimated
directly by gene counting. Heterozygosity for each of
these systems was estimated as 1 - Ex2, where xi is
the estimated frequency of the ith allele in the system.

Standard errors of these estimates were obtained by
using equation 8.7 in Nei (1987). Nucleotide diversity
for the mitochondrial sequence was measured as (nl
(n - 1))Txxixjnij, where n is the number of individuals,
xi is the frequency of the ith mtDNA haplotype in the
population, and nii is the proportion of nucleotides
that differ between the ith and jth mtDNA haplotypes
(Nei 1987). The standard error of this estimate was
estimated using equation 10.7 of Nei (1987). The pro-
portion of genetic variance attributable to population
subdivision was estimated using the GST statistic
(Wright 1965; Nei 1987). Selective neutrality of the
mtDNA data was evaluated using tests devised by
Tajima (1989) and Rogers (in press).

For the nuclear polymorphisms, genetic distances be-
tween pairs of populations were estimated using Nei's
standard distance (Nei 1987). This measure assumes an
infinite-alleles model of mutation. Genetic distances for the
STRs were also estimated using a new measure formulated
by Shriver et al. (1995), which weights distances by the
difference in the number of repeat units and thus assumes
a stepwise mutation model. For the mtDNA sequence data,
Kimura's (1980) two-parameter model was used to esti-
mate nucleotide diversity between each pair of individuals.
An empirically derived transition:transversion ratio of
30:1 was used (Bamshad et al., in press). The average
diversity within and between populations was then esti-
mated by equation 10.21 of Nei (1987).
The relationships among populations were depicted by

neighbor-joining trees (Saitou and Nei 1987), using pro-
grams in the PHYLIP package (Felsenstein 1993). The
neighbor-joining method tends to provide more accurate
estimates of population affinities than some other methods
because it does not assume equal evolutionary rates in
each branch of the tree (Nei and Roychoudhury 1993).
Two other tree-making methods (the Fitch-Margoliash
least-squares method and the unweighted pair-group
method using arithmetic averages) yielded similar results
(data not shown). To assess the reliability of these trees,
1,000 bootstrap replicates were run for each set of systems.
The degree of congruence among the STR, RSP, and

mtDNA distance matrices was evaluated using the Man-
tel matrix comparison test (Mantel 1967; Smouse et al.
1986). This test yields a product-moment correlation
coefficient for each pair of distance matrices. An empiri-
cal significance level is obtained by repeatedly permuting
the columns of one of the distance matrices and compar-
ing the actual correlation coefficient with those gener-
ated from the permuted matrices. Each pair of matrices
was permuted 10,000 times.

Results and Discussion

Genetic Diversity within Major Populations
The gene diversities for each major population are

given in table 1. Europeans exhibit the highest level of
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Table I

Gene Diversity (±Standard Error) for Each Major Population

RSPs STRs mtDNAa

Africans ......... .322 ± .073 .769 ± .102 .031 ± .001
Asians ......... .377 ± .052 .681 ± .074 .011 ± .001
Europeans ........ .432 ± .032 .724 ± .086 .010 ± .001

Overall ......... .377 ± .018 .725 ± .020 .020 ± .001

a Diversity at the nucleotide level. The standard error estimates in-
clude sampling variance only. The standard errors for the mtDNA
nucleotide diversity are larger if stochastic variance is also included.

heterozygosity for RSPs, while Africans have the lowest
heterozygosity level. This pattern has been seen in other
studies of RSPs (Bowcock et al. 1991) and could reflect
the fact that most of these polymorphisms were first
detected in European populations (Mountain and Ca-
valli-Sforza 1994). In contrast, the highest STR hetero-
zygosity values are seen in Africans, and the lowest are
seen in Asians. The average number of STR alleles per
locus is highest in Africans (9.5), intermediate in Europe-
ans (8.2), and lowest in Asians (8.1). These differences
are not statistically significant using a one-way analysis
of variance, however, and the standard errors of the
heterozygosity estimates given in table 1 show that these
values are not significantly different.
The gene diversity values based on mtDNA are similar

in magnitude to values obtained in other studies (Horai
et al. 1993). These diversity values differ significantly,
with African diversity approximately three times higher
than that of Asians and Europeans.

Application of Tajima's (1989) neutrality test to the
mtDNA data shows that gene diversity in Europeans and
Asians is considerably lower than predicted by neutral
theory (D = -1.43 and -1.46, respectively). The Afri-
can gene diversity is greater than predicted by neutral
theory (D = 0.60). However, these values lie within the
90% confidence limits of the neutral prediction, so the
neutrality hypothesis is not rejected by this test. Rogers's
test, which is based on the distribution of nucleotide
differences within populations, rejects the hypothesis of
mutation-drift equilibrium. This is consistent either with
a rapid expansion of the human population or with a
departure from selective neutrality.

Genetic Diversity between Populations
The genetic distances between each pair of continental

populations are given in table 2. In each system-RSPs,
STRs, and mtDNA-the Asian-European distance is
smaller than the African-Asian and African-European
distances. The Africans are more divergent for mtDNA
sequence than for the two sets of nuclear polymor-
phisms: the ratio of distances involving Africans to those
not involving Africans is approximately 2:1 for nuclear
polymorphisms but 9:1 for the mtDNA sequence.

Table 2 also lists the GST values for each system. The
GST estimate for RSPs, .107, indicates that 11% of
genetic variation can be attributed to subdivision at the
level of major continental populations. This value lies
within the 10%-15% range seen in other studies of
RSPs (Bowcock et al. 1991), protein and blood group
polymorphisms (Jorde 1980; Nei 1993; Cavalli-Sforza
et al. 1994), and craniometric data (Relethford and Har-
pending 1994). The GST value obtained from STRs,
.034, is substantially smaller than the value obtained
from RSPs and likely reflects the relatively high STR
mutation rate. It should be emphasized, however, that
this estimate of GST does not take differences in STR
allele sizes into account.
The GST estimate for mtDNA sequence, .199, is higher

than the estimates based on nuclear polymorphisms.
This difference may be attributed to the fact that the
effective population size of mtDNA is one-fourth that
of nuclear DNA (Birky et al. 1983), producing more
rapid genetic drift for mtDNA polymorphisms. Previous
GST estimates derived from mtDNA restriction site data
range from .31 to .46 and are thus substantially higher
than our estimate (Stoneking et al. 1990; Merriwether
et al. 1991). In part, this may be because the control
region, from which the present GST estimate was de-
rived, has a much higher mutation rate than the remain-
der of the mitochondrial genome, from which the previ-
ous estimates were derived. In addition, the previous
GST estimates were obtained using the method of Taka-
hata and Palumbi (1985), which appears to yield inflated
values (Harpending et al., in press).

Figure 1 displays a neighbor-joining tree based on
mtDNA data in 13 subpopulations. All 13 subpopula-
tions cluster into the appropriate major continental
groups (Africans, Asians, and Europeans). Long branch
lengths are seen for most of the African populations.
This pattern has been observed in most other mtDNA
analyses and has been a major component of the argu-
ment for an African origin of modern humans (Cann et
al. 1987; Vigilant et al. 1991; Stoneking 1993). The non-
African populations have comparatively short branch
lengths, and the nodes separating these populations are
very close to one another.

Figure 2, which presents a neighbor-joining tree esti-
mated from RSP data, demonstrates pronounced cluster-
ing of each of the three major continental populations.
As has been seen in other studies (Bowcock et al. 1994;
Cavalli-Sforza et al. 1994), the Mbuti Pygmies have a
long branch length; this may be caused by small effective
population size. The Malay sample, which was derived
from an aboriginal population, also has a long branch
length. In contrast to the mtDNA tree, the African popu-
lations do not display markedly longer branch lengths
in the RSP tree.
A neighbor-joining tree based on STRs is shown in

figure 3. The distance measure of Shriver et al. (1995),
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Table 2

Genetic Distances between Major Populations for Each Major Genetic System

RSPs STRsa mtDNA
(GsT = .107) (GST = .034) (GST = .199)

African-Asian ............... .154 .024 .009
African-European ......... .124 .016 .010
Asian-European ............ .066 .010 .001

a The distances reported for STRs were estimated using the method of Shriver et al. (1995).

which assumes a stepwise mutation process, was used
in estimating the tree. Figure 3 closely resembles figure
2, with populations clustering into major continental
groups. This marked clustering argues against the hy-
pothesis that the low GST values seen for STRs reflect
interpopulation convergence resulting from forward-
backward mutation (Bowcock et al. 1994). Instead, the
high STR mutation rates produce low GST values be-
cause of a high level of within-group diversity relative to
total diversity (Jin and Chakraborty, in press). Genetic

Chinese

N. European

Vietnamese

Nguni

Sotho/Tswana

BBlaka Pygmy

Mbuti Pygmy

Figure I Neighbor-joining tree based on mtDNA sequence

data. In this and all subsequent figures, the numbers listed next to

branch nodes indicate the no. of times that the bootstrapped replicates
supported the branches to the right of the node. Absent numbers
indicate that the configuration of the actual tree differed from that of
the consensus tree at this node.

distances, however, can remain large and well defined,
as observed in the present analysis.
An STR tree based on Nei's standard distance, which

assumes an infinite alleles model, was less similar to the
RSP tree and displayed less clear separation of continental
population groups. This result provides indirect evidence
that STR variation is modeled more accurately by a step-
wise mutation process (such as replication slippage) than
by an infinite alleles process (such as unequal chromosome
exchange) (Shriver et al. 1993; Di Rienzo et al. 1994).

Table 3 contains the Mantel matrix correlations for
each pair of distance matrices. These correlations give
quantitative support to the visual interpretations of the

Malay

300 ~~Cambodian
.7 Japanese

Vietnamese
568

| ~~~Chinese
620

N. European
787

French

Tsonga

380

Mbuti Pygmy
723

Biaka Pygmy
326

Sotho/Tswana

148

San

137
Nguni

Figure 2 Neighbor-joining tree based on Nei's standard dis-
tance for 30 RSPs (Nei 1987). See legend to fig. 1.
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French
755

N. European

Vietnamese
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385 -Chinese

340 - Japanese

320 Cambodian

Malay

Blaka Pygmy

Sotho/Tswana

Nguni

Figure 3 Neighbor-joining tree based on Shriver et al.'s (1995)
distance for 30 STRs. Bootstrapping was done using each locus (rather
than each allele) as the sampling unit. See legend to fig. 1.

neighbor-joining trees. In addition to the data sets de-
scribed above, a distance matrix based on five trinucleo-
tide repeat systems (Huntington disease, spinal bulbar
muscular atrophy, spinal cerebellar ataxia type 1, myo-
tonic dystrophy, and dentatorubral pallidoluysian atro-
phy [DRPLA]) is included. These data, which are de-
scribed fully by Watkins et al. (in press), were generated
on the same study population as the RSP, tetranucleo-
tide, and mitochondrial systems. The tetranucleotide

and RSP distances yield a large and highly significant
correlation (P < 10-'), and the correlation is higher
when the distance measure of Shriver et al. (1995) is
used for the tetranucleotides. The trinucleotide repeat
distances are also highly correlated with both of the
other sets of nuclear systems (P < 10-4). In contrast,
all of the correlations involving mtDNA with nuclear
systems are lower and either less significant or nonsig-
nificant. The largest correlation is seen with RSPs (r
= .512, P < .001), while the correlations with tetranu-
cleotide systems are nonsignificant (P > .05) and the
correlation with trinucleotide systems is low and mar-
ginally significant (r = .219; .04 < P < .05).
Implications for Modem Human Origins
Our mtDNA results are consistent with those of most

other studies in showing increased gene diversity and long
branch lengths for African populations. The nuclear DNA
results are also consistent with previous studies of nuclear
blood group and protein polymorphisms (Cavalli-Sforza
et al. 1988; Nei and Roychoudhury 1993), RSPs (Bowcock
et al. 1991), dinucleotide repeat polymorphisms (Bowcock
et al. 1994; Di Rienzo et al. 1994; Deka et al. 1995), and
a sample of four Alu polymorphisms (Batzer et al. 1994)
in showing greater divergence for African populations than
for other populations.
Although all data types suggest greater African diver-

gence, the degree of divergence is less for the nuclear
data than for the mtDNA data. In addition, while the
nuclear RSP and STR results are highly concordant,
there is less concordance between the mtDNA and nu-

clear results shown in figures 1-3. This has important
implications for genetic inferences about modern human
origins, since population history should affect mtDNA
and nuclear DNA variation similarly. There are several
possible reasons for this discordance:

1. Ascertainment bias in nuclear polymorphisms.-The
mtDNA polymorphisms cannot be affected by an ascer-

tainment bias, because they were obtained from DNA
sequence ascertained uniformly in all populations. The

Table 3

Mantel Matrix Correlations for Each Pair of Genetic Distance Matrices

STR STR
(Nei's distance (Shriver's distance

RSP [Nei 1987]) [Shriver et al. 1995]) Trinucleotides

mtDNA ......... ........... .512a .359 .274 .21 b
RSP . ..655c .769c .747c
STR (Nei's distance) .814c 555C
STR (Shriver's distance) .640c

NoTE.-Other correlations are nonsignificant.
ap < .001.

b.04 < P < .05.
cp < lo-4.
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RSPs were detected primarily in Europeans, and the re-

sulting bias may contribute to the excess European het-
erozygosity in the RSP data. This is unlikely, however,
to be the sole cause of increased heterozygosity. A statis-
tical analysis of ascertainment bias in two-allele systems

demonstrates that this bias can account for no more

than half of the excess European heterozygosity (A. R.
Rogers and L. B. Jorde, unpublished information). A
parallel analysis of systems with multiple alleles shows
that ascertainment bias is negligible for the highly het-
erozygous STR polymorphisms. If ascertainment bias
were responsible for the discordance observed here, one

would predict that the RSPs, which presumably have
the greatest degree of bias, would have the lowest corre-

lation with mtDNA sequence. Instead, table 3 shows
that they have the highest correlation. In addition, one

of the expanded trinucleotide repeat polymorphisms,
DRPLA, was ascertained in Asians. Yet this polymor-
phism yields a neighbor-joining tree with the same con-

figuration as the tetranucleotide tree, with roughly equal
branch lengths in Africans and Asians (Watkins et al.,
in press). Given these results, it is unlikely that ascertain-
ment bias alone accounts for the discordance between
mtDNA and nuclear DNA results.

2. Differences in substitution rates.-The substitution rate
in the mtDNA HVS-2 region is estimated to be -12.5%
per nucleotide per million years, or 3 x 10-6 per nucleotide
per generation (Sherry et al. 1994). This is considerably
higher than that of the RSPs, whose substitution rate is
estimated to be 0-7_-10-9 per nucleotide per generation
(Nei 1987; Bowcock and Cavalli-Sforza 1991). The muta-
tion rates for tetranucleotide repeats are the highest of
the three systems, estimated at 10-4_-0-3 per generation
(Edwards et al. 1992; Weber and Wong 1993). If substitu-
tion rates accounted for the discordance observed here,
one would expect the two nuclear substitution rates to be
most similar to one another. Instead, the mtDNA substitu-
tion rate is intermediate between those of the two sets of
nuclear polymorphisms.

3. Inadequate sample sizes.-All population genetic
analyses are necessarily based on a limited collection of
individuals and polymorphisms. It is unlikely that the
differences observed here are caused by a limited sample
size, because all three nuclear data sets produce highly
consistent results and the mtDNA results are consistent
with those published previously using different popula-
tion samples and different portions of the mtDNA ge-
nome (hypervariable sequence 1 and RSPs outside the
D loop). Nonetheless, the degree of resolution of the
mtDNA data is limited by the fact that the mtDNA
molecule is effectively a single locus.

4. Differences in male-female migration rates or effective
population sizes.-Because mtDNA is maternally inherited
while nuclear DNA is biparentally inherited, differences
in the two types of data could be produced by differences
in male-female migration patterns or effective popula-

tion sizes. Higher mtDNA diversity between African
populations would then require that male dispersal has
been greater than female dispersal in African popula-
tions and/or that fewer females than males contributed
to the African gene pool for a long period. Additional
light will be shed on these possibilities as more informa-
tion is gained about genetic variation in human Y chro-
mosome DNA (Spurdle and Jenkins 1992).

5. Lack of selective neutrality in mtDNA.-An important
assumption in inferring population history from genetic
data is that genetic polymorphisms are selectively neu-
tral. The RSPs and STRs used in this study occur primar-
ily in noncoding DNA, and most appear to meet this
assumption (Bowcock et al. 1991; Shriver et al. 1993).
In contrast, mtDNA polymorphisms outside the non-
coding D loop show a departure from neutrality (Excof-
fier 1990; Merriwether et al. 1991; Templeton 1993),
with a relative lack of diversity seen in Asians and Euro-
peans. The HVS-2 data analyzed here show a similar
departure from neutrality in Asians and Europeans, al-
though it is not statistically significant. These departures
may reflect the action of natural selection, or they could
be the result of past population expansions (Rogers and
Harpending 1992; Rogers, in press). Since there is no
recombination in the mitochondrial genome, natural se-
lection on a coding gene will exert a substantial genetic
"hitchhiking" effect, even on polymorphisms in the non-
coding D loop. It is thus possible that the differences
seen here in mtDNA and nuclear DNA may be produced
by natural selection rather than population history.

Increased mtDNA diversity in Africans has been a linch-
pin of the argument that modem humans originated in
Africa and then replaced existing archaic populations on
other continents. Proponents of this view argue that since
Africa is more diverse genetically, its population must be
older (Stoneking 1993). However, diversity can be strongly
affected by events in a population's history, such as the
timing of major bottlenecks, and therefore does not neces-
sarily reflect a population's age (Rogers and Jorde 1995).
Our findings further compromise the diversity argument
by showing that nuclear DNA trees lack the deep branches
(and thus the excess genetic diversity) observed in mtDNA
trees. These results do not disprove the African replace-
ment hypothesis. However, they weaken the genetic evi-
dence in its favor.
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